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Field Analysis of Rectangular
Waveguide Open Junction

Christos T. Iatrou and Marco Cavenago

Abstract—The problem of a rectangular waveguide open junc-
tion is investigated using field theory and the relevant model
of two normally intersected, infinite parallel-planes waveguides.
Evanescent waveguide modes generated by waveguide wall edges
and/or the discontinuity in dielectric are taken into account; an
infinite set of equations is derived, where the mode coupling
is given by the dielectric slab modes. Proper pole handling is
discussed, and a solution for the system is given. Expressions are
derived for the reflected, transmitted, and radiated power, which
are shown to be sufficiently reliable in the domain of practical
interest, regarding the width and the dielectric loading of the gap.
The analysis shows that a substantial fraction of the microwave
power leaks from the dielectric gap, confirming the absolute
necessity of using a choke-flange at the waveguide junction.

I. INTRODUCTION

FREQUENTLY the microwave coupling of two sections
of a waveguide line is desired under circumstances that

make the attainment of a good metallic contact difficult or
that even prohibit the contact for electrical insulation reasons.
A number of applications require this type of coupling, such
as rotary joints and other types of motional joints frequently
used in radar applications, open junctions allowing possible
misalignments in the RF-line components, and dc breaks for
dc electrical insulation between two parts of the RF circuit
without interrupting the RF signal. In particular, in electron
cyclotron resonance ion sources (ECRIS) [1]–[3], the vessel
is biased to a high potential of 1020 kV, while the klystron
amplifier, which feeds the plasma chamber with RF power,
and all the components of the RF line up to the chamber are
earthed for economy and safety reasons. Thus, the waveguide
line must be electrically broken, at a certain position before
the plasma chamber, using a dc break [2].

In the literature on the similar problem of open waveguides
[4], a singular integral equation method was developed, where
a careful choice of the expanding functions for and
is devised to make more accurate the well-known Galerkin’s
procedure for numerical solution. Several numerical methods,
such as the finite-integration method [5], the finite-element
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method [6], [7], and the boundary-element method [8], [9],
have been developed to solve waveguide discontinuity prob-
lems, and they are appropriate for investigating structures of
complicating shape, where the em-field distribution cannot
be described in a closed form; therefore, practical impossi-
bility of analytical solutions is evident. Among the methods
that do not preclude analytical solutions, the mode-matching
method [10]–[14] is the most convenient and widely used one,
although its applicability is restricted in certain geometrical
configurations, where the em-field can be represented either by
an infinite set of modes or by an integral transform. References
[10]–[14] indeed treat geometries similar to dc breaks, but with
some simplifications (there is no dielectric, the terminations of
the open junction are addedad hoc, or the output waveguide
is ignored); in this literature, the field-continuity equations
are satisfied at each boundary of the discontinuity and an
infinite set of linear algebraic equations for the field expansion
coefficients is obtained, which is subsequently truncated and
numerically solved.

Our objective in this paper is to derive analytical expressions
for the scattering coefficients of a flanged rectangular wave-
guide open junction, used in a dc break, with dielectric loading
of the gap space (see Fig. 1). The dielectric sleeve helps to
avoid sparks in the component because of the applied high dc
voltage. The method used is the mode-matching with appro-
priate field expansion in Fourier series and integrals. A similar
problem of a circumferential gap in a circular waveguide has
been studied in the monomode [15], as well as the multimode
[16] waveguide case. In these papers, the incident wave is the
circular symmetric TE with no longitudinal currents on the
waveguide wall. The transverse currents do not considerably
charge the boundary of the gap and thus little energy is radiated
into the surrounding space. In the case of a rectangular gap,
charged by the dominant TEmode, the image is completely
different and considerable radiation is expected through the
gap.

This paper is organized as follows. In Section II we describe
our two-dimensional (2-D) model, the basic equations, and
the field representation used in the analysis. In Section III the
mathematical formulation is presented for the analytic com-
putation of the scattering coefficients. In Section IV the same
formulation is applied to the field generated by the dielectric
interface. Results of the analytic solution are presented in
Section V and compared with two numerical codes, along
with a discussion for the reliability of the analysis in different
domains of gap width and dielectric loading.
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Fig. 1. The infinite parallel-planes waveguide model of the dc break:zy

cross section of the model and the metallic boundaries.

II. M ODEL AND BASIC EQUATIONS

A 2-D model for a rectangular waveguide open junction
with transverse dimensions consists of two, normally
intersected, infinite parallel-planes waveguides, as shown in
Fig. 1. The parallel planes of the horizontal waveguide are in-
finitely extended in the - and -directions, while the distance
between them is taken equal to the small transverse dimension

of the actual rectangular waveguide. As for the vertical
waveguide, which is assumed to be filled with dielectric
material of relative permittivity the parallel planes are
extended to infinity in the - and -directions, while the
distance between them is denoted byand represents the
width of the open junction.

The wave energy incident from on the open
junction is partially reflected and partially transmitted. Some
of the energy is coupled to the vertical dielectric waveguide.
Since no free current is present, from which

where is an electric vector potential, also called the magnetic
Herztian potential [17] or the antipotential; moreover, since
the incident TE dominant mode of a monomode waveguide
has no -magnetic component, we assume that the electric
potential has no -component. An appropriate choice for
the electric potential is then

(1)

where and have dimensions of potential.
The fields and in terms of are given by [17]

(2)

(3)

where the dielectric permittivity is in general
function of The electric potential satisfies the wave
equation in uniform media.

Applying boundary conditions for the tangential compo-
nents of and the normal components of we obtain the

following boundary conditions for the components and
on the metallic boundary (see Fig. 1)

(4a)

(4b)

and on the metallic boundary

(5a)

(5b)

where denotes partial derivative with respect to variable
On the interface between the two media the normal compo-

nents of and and the tangential components ofand
must be continuous. So, using the notation “ cont” to mean
that is continuous on the air-dielectric interface, we write
the following four linearly independent interface conditions for
the potential functions and

(6a)

(6b)

(6c)

(6d)

Note that the potential component is separated satisfying
conditions (6a) and (6b); our choice of using electric potential
therefore gives only one interface equation that couples
and out of four. If we had chosen and we would
have two coupling conditions; if we had chosen and
(corresponding to the TE and TM modes of the incoming
waveguide) we would have four coupling conditions.

Let us now represent the potential functionsand in
Regions I and II (see Fig. 1) as infinite sums on Fourier
components

(7a)

(7b)

where and are the guiding wavenum-
bers in the - and -direction, respectively,

is the guided wavenumber for the propagating TE
mode, are the attenuation constants for
evanescent modes for and Note that the
incoming TE mode is produced by the only driving term,
which appears in the potential component. The coefficients

and correspond to reflected waves, back to Region I,
while and correspond to transmitted waves, through
the open junction to Region II.

The fact that the potential function does not contain
any driving term, combined with the interface condition
implies that this potential component and the corresponding
waves are generated just because of the presence of the
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dielectric discontinuity at and and not because
of the geometric gap. Otherwise, if there were no dielectric
in the vertical waveguide, the quantity would be
continuous, so that and itself would be continuous at
the interface; therefore, would satisfy the equations of a
damped resonator without internal discontinuities in the union
of Regions I, II, and III, with mixed boundary condition
this would imply

In Region III we represent the functionsand as Fourier
integrals

(8)

where and with the
square root analytically continued for nonpositive arguments
(the complex plane cut is yet to be defined, but it will be shown
that the results do not depend on its particular choice). Note
that the coefficients and are functions of

From (7) the propagating field in Regions I and II can be
computed. The reflection and transmission scattering
coefficients in power are then given, in terms of the Fourier
potential coefficients, by the following formulas:

(9a)

(9b)

where the superscriptdenotes complex conjugate quantities.

III. M ATRIX EQUATIONS AND

SOLUTION FOR THE POTENTIAL

Application of the condition (6a) at and
multiplication by and integration on from
to yields

(10)

where is a numerical factor, and the
function expresses coupling between discrete modes and
the continuous defined as

The second interface condition for the -potential
function is then applied at and multiplied by

and integrated on from to to yield

(11)

With simple matrix manipulations, (11) can be solved for
and and the result is introduced to (10) to yield the

following system for the -function coefficients:

(12)

where is a purely diagonal term and

(13)

The integrands in (13) are even in so that only the
square of and not itself appears in any series expansion
of the integrand; this makes immaterial the choice of cut in
the complex plane. Moreover, both integrals in (13) have
infinite poles in the complex plane. A pair of poles is on the
real axis, at corresponding to the dominant TE
mode, which always propagates in the dielectric waveguide.
An infinite pair of poles are at where

and correspond to TE and TM modes,
which may be propagating or evanescent, depending on the
width of the dielectric waveguide. For small values of
these modes are evanescent and the poles are on the imaginary
axis. Each of these modes start to propagate asbecomes
greater than

Let us discuss the meaning of results (unphysical) if sin-
gularities in the integrand were fixed by the principal value.
The and found were real. The structure of (12) and
the real values of and always impose a solution
satisfying the relation which means that
there is no power radiated into the dielectric waveguide,
whatever the value of A way to interpret this result is to
consider that there are, indeed, waves propagating into the
dielectric waveguide, but these waves are reflected back from
the boundaries at since no boundary conditions
correspondent to purely outgoing waves were imposed there. A
simple way to avoid this effect is to introduce a small damping
on the waves that travel along the dielectric waveguide, so that
no power reaches the boundaries at to be reflected
back. In mathematical terms, when evaluating the integrals on

in (13) by the residue method, we add an imaginary part
to the relative dielectric constant In the

complex plane, the pair of previously real poles at
is now moved from the real axis, taking an imaginary part
proportional to Likewise, the infinite pairs of the previously
imaginary poles (for small are now displaced for a real
part proportional to The method is analogous to “Landau
prescription” for the choice of the integration path in instability
studies. In the limit of vanishing the following expressions
for the integrals in (13) are obtained: if
then and if then see (14),
shown at the bottom of the next page, where the following
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notations are used: and

(15a)

(15b)

In the above expressions primed quantities refer to the
poles while these with subscriptto the first of the poles.
For small values of the main contribution to the integrals
comes from the poles, that means the propagating waves
in the dielectric waveguide, while the significance of the
evanescent waves, represented by thepoles, is increasing
with

Assuming that it is sufficient to keep only the
first term of the infinite sum in (14).

After substituting (14) into (12), we note that the and
vanish for odd, and the following system is obtained

for the even order coefficients of the potential component

(16)

where

(17a)

(17b)

and we introduce the collective variables

(18)

The infinite system (16) and (18) can be solved. Indeed,
from (16) we obtain expressions for the coefficients and

in terms of and

(19)

where Introducing (19) into (18) we get a
system for unknowns and which is then solved

to give

(20a)

and

(20b)

where

(21a)

(21b)

(21c)

(21d)

and Substituting (20) back to (19) and
applying this equation for analytical expressions for
potential coefficients and are trivially obtained.

IV. THE COEFFICIENT OF

Combining (4a) and (6c) we note that the function
satisfies for every the equations

(22a)

(22b)

(where for and is zero elsewhere); their
solution will be similar, but not equal to the solution for the

function Fourier coefficients.
After substituting the expression for fields (7) and (8), we

Fourier transform (22) obtaining for each

(23)

where not only and but also depend on The
remaining condition (6d) applied to the two interfaces at
and gives the two equations

(24)

(14)
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where we expressed in terms of and
and similarly, thanks to (7) and (8). Here the quantity

comes from the jump of dieletric constant at
interface; it is positive for ordinary dieletric.

Equation (24) holds only for for any given
let indicate the expression in round brackets of (24);
are two-component vectors and are just useful shorthand, since
they do not depend on In the right-hand side (RHS) of (24),

may be easily expressed in terms of thanks to (23); we
note that unfortunately, when or the integration
on is divergent for due to the factor. By
the naive approach of multiplying (24) with and
integrating from 0 to we could obtain directly expressions
for in term of still plagued by divergent integrals,
which makes residue method inapplicable. To avoid this, we
follow a more tortuous path, which practically gives the same
results (35).

We first define the integrals of the eigenmodes

(25)

and, correspondingly, we integrate (24) from to

(26)

where the quantities and
which came from matrix inversion in (23) and

product in (24), still depend on Note that integrating on
cancels singularity for but are no longer

orthogonal.
We can now multiply (26) by and integrate

from 0 to obtaining (after performing the straightforward
integrations implied in and the simplifications
of factors and exploiting symmetry about

(27)

valid for where and computing integration
by residue method and the elementary integrations, have
similar expressions

(28)

with and otherwise; here
and the pole strength is given by

The expression for corresponding to (28) has deleted
and replaced by

We recognize that first and second term of (28) inserted in
(27) can be merged with and after defining for any
a new vector

(29)

Furthermore, by defining

(29) becomes

(30)

With this notation, (27) becomes

(31)

It is convenient to distribute (31) into parts, using the identity

(32)

Some direct information from boundary condition makes (31)
simpler to be solved. From (22) taken at or

we know that

This conclusion is corroborated by the fact that otherwise
(31) would contain a divergent part, precisely that arising
from first term of RHS of (32). This part is instead zero
because of Second, since we
search a finite solution for and we can assume that
sums of are convergent, which implies

when From expression (30), knowing
that and is exponentially decreasing with we
conclude that

(33)

Taking the limit of (31) for and observing that the
part arising from the third term of (32) converges to zero, we
are left with the second part only

(34)

Adding (34) to (31), we get

(35)
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for any given even As to we note that (34)
becomes of the form (35) by substituting with

thus (35) applies to every even
We now define the collective variable

(36)

which is a sort of projection on a privileged axis of
space. Consistently to the approximation done

for we truncate the RHS of (35) to the first term inso
that (35) may be solved as

(37)

By substituting (37) into (36), we find a linear equation for
the collective variable, of the form with
the coefficients

(38)

(39)

The value of the collective variable is thus

(40)

This equation together with (37) are the complete solution for
case is trivial.

Let us mention how the symmetries of the model geometry
(reflection about and reflection about has
entered in the final result. The odd components (respect to-
reflection) are the odd components, which are not excited
and they had been found to be zero. Both symmetric and
antisymmetric components (respect to thereflection) are
excited by the transmitter; indeed we found collective variables
which are symmetric (namely, and that are proportional
to where and are and or and
as appropriate) and others which are antisymmetric (namely,

proportional to ).

V. COMPARISON WITH NUMERICAL RESULTS

In this section, we show comparisons of results of our ana-
lytic theory to numerical results obtained from two codes. One
is the well-known Maxwell’s equations using finite integration
algorithm (MAFIA) [5] and the other, provisionally called
microwave problem (MP), is being developed by Cavenago.
The results from these codes are generally in agreement.
Results from MP are preliminary; since it is a 2-D code (using
ten mesh nodes to model the gap) it runs very fast (one minute
per simulation) and 2-D parameter studies are well possible.

To simplify comparison, we consider only the gap thickness
and the dieletric index as variable parameters; other

data applies to WR-62 (alias WG-18, alias R140) rectangular
waveguides, operating at 14.4 GHz. The waveguide transverse

Fig. 2. The reflection coefficients11 (in %) as a function ofd; for �r = 1

(empty markers) and 2.1 (filled markers). Analytical result are compared with
result from two numerical codes.

dimensions are: mm, and mm. In practical
application is typically 1 mm, so here will range from 0.1
mm to about 10 mm; the cases (air gap) and
(Teflon) are particularly important.

From numerical code MP, transmission, reflection, and
radiation can be directly found; their sum is of course unity
within the precision of the code; we plot unnormalized results.
In the case of MAFIA results, it was convenient to obtain
transmission and reflection directly and to compute radiation
as difference from unity. From the present analytical theory
transmission and reflection are directly obtained; radiation
is obtained by difference, which may lead to larger relative
errors. In Figs. 2–4 we plot transmission and reflection for

and 2.1. We first note that analytical theory assumes
that is real, which implies

that is mm for and mm for
In the first case, remarkable also because the

function only affects results, the agreement of MP and
analytical theory is rather good for transmission and radiation
for mm. The oscillation for of the analytical
results is explained by the fact that becomes imaginary
when exceeds we conclude that the results are reliable
for where 0.5 is a conservative safety factor; that
leads to the criterion

(41)

for every For we indeed find that the analytical
result (including reflection) are reliable up to mm,
in agreement with criterion (41).

In Fig. 5 we plot reflection, radiation, and transmission for
mm (analytical result for radiation have a large relative

error). From criterion (41) we expect that reliable results will
be obtained for that is

for mm. We note that the analytically calculated
transmission is indeed in good agreement with the numerical
results. As for reflection, agreement is generally rather good,
with some large error close to that can be related
to the fact that vanishes and then becomes imaginary when

reaches and exceeds
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Fig. 3. The transmission coefficients21 (in %) as a function ofd; for
�r = 1:

Fig. 4. The transmission coefficient (in %) as a function ofd; for �r = 2:1:

Fig. 5. Comparison of transmitted and reflected power for a normal gap.
(d = 1 mm).

Concerning the sum of reflection and transmission, we note
that it is still physically consistent, that is, it does not exceeds
one even for large value of

In Fig. 6 we plot a 2-D histogram of transmission as
computed the MP code. Note that the greater the gap width or
the dielectric constant, the less wave is transmitted, until some
undulation (shown in front view) appears between 20–50%. In
Fig. 7 the 2-D histogram for analytically computed transmis-
sion is shown for comparison. The flat zero plateau in the
front is where theory is no longer defined (becausebecome
imaginary). The region of criterion (41) correspond roughly
the first six bands of histogram (corresponding to transmission
greater than 40%). In this region, agreement between theory
and results is fairly good.

Fig. 6. The transmission as computed by a numerical code. Note that the
greater the gap length or the dielectric constant, the less wave is transmitted.

Fig. 7. The transmission as computed by analytical theory. The region where
theory is no longer defined (becausek1 becomes imaginary) was filled with
zeros (flat plateau in the front).

Having obtained an analytical solution from first principles
of a 2-D dc break, discrepancies with numerical results may
come only from approximations used; and the only approxi-
mation used here is neglecting all poles on the ground
that they contribute less than and poles because they are
far away from real axis. It should be noted that the inclusion
of poles in function computation will be extremely
laborious, albeit possible. On the other side pole can be
easily included in but it proved to be practically irrelevant.

We also note that in the limit the agreement between
theory and codes becomes very good. This can be expected,
since the poles move toward infinity, therefore
making the truncation more plausible.
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