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Field Analysis of Rectangular
Waveguide Open Junction

Christos T. latrou and Marco Cavenago

~ Abstract—The problem of a rectangular waveguide open junc- method [6], [7], and the boundary-element method [8], [9],
tion is investigated using field theory and the relevant model have been developed to solve waveguide discontinuity prob-

of two normally inte!'sected, infinite parallel-planes V\_/aveguides. lems, and they are appropriate for investigating structures of
Evanescent waveguide modes generated by waveguide wall edges '

and/or the discontinuity in dielectric are taken into account; an Compllcat.lng S_hape, where the em-field d'Str'bL_]t'On_ Cannqt
infinite set of equations is derived, where the mode coupling b€ described in a closed form; therefore, practical impossi-
is given by the dielectric slab modes. Proper pole handling is bility of analytical solutions is evident. Among the methods
discussed, and a solution for the system is given. Expressions arethat do not preclude analytical solutions, the mode-matching
derived for the reflected, transmitted, and radiated power, which  ath6q [10]-[14] is the most convenient and widely used one,
are shown to be sufficiently reliable in the domain of practical ith h it licability i icted i tai ical
interest, regarding the width and the dielectric loading of the gap. a 9“9 '_S applicability 1S re_strlc ed in certain geome_trlca
The analysis shows that a substantial fraction of the microwave configurations, where the em-field can be represented either by
power leaks from the dielectric gap, confirming the absolute an infinite set of modes or by an integral transform. References
necessity of using a choke-flange at the waveguide junction. [10]-[14] indeed treat geometries similar to dc breaks, but with
some simplifications (there is no dielectric, the terminations of

|. INTRODUCTION the open junction are addedi hog or the output waveguide

REQUENTLY the microwave coupling of two sectiongs ignor_ed.); in this literature, the field-co.ntinuit.y gquations
of a waveguide line is desired under circumstances tfﬁ:{f satisfied at each boundary of the discontinuity and an
make the attainment of a good metallic contact difficult dPTinite set of linear algebraic equations for the field expansion
that even prohibit the contact for electrical insulation reasorﬁsqe‘cﬁc_'ents is obtained, which is subsequently truncated and
A number of applications require this type of coupling, sucﬂumer'ca_IIy ;olyed. , , ) ) )
as rotary joints and other types of motional joints frequent| Our objectlvg in this paper is to derive analytical expressions
used in radar applications, open junctions allowing possibPI/%r_ the scattering coefficients of a flanged rectangular wave-
misalignments in the RF-line components, and dc breaks QHIde open junction, used_m adc breal_<, W|th_d|electr|c loading
dc electrical insulation between two parts of the RF circutf 1€ 9ap space (see Fig. 1). The dielectric sleeve helps to
without interrupting the RF signal. In particular, in electrofV0id sparks in the component because of the applied high dc
cyclotron resonance ion sources (ECRIS) [1]-[3], the vessitage. The method used is the mode-matching with appro-
is biased to a high potential of 220 kV, while the klystron priate field expansion in Fqurler series a-md integrals. A similar
amplifier, which feeds the plasma chamber with RF poW(:_,tp,roblem o_f a qrcumferentlal gap in a circular wavegmd_e has
and all the components of the RF line up to the chamber /g€ studied in the monomode [15], as well as the multimode
earthed for economy and safety reasons. Thus, the waveguifd] waveguide case. In these papers, the incident wave is the
line must be electrically broken, at a certain position befofdrcular symmetric Tk, with no longitudinal currents on the
the plasma chamber, using a dc break [2]. waveguide wall. The transverse current; do not cor.13|der.ably
In the literature on the similar problem of open waveguideéd1arge the boundary of the gap and thus little energy is radiated
[4], a singular integral equation method was developed, whdfé0 the surrounding space. In the case of a rectangular gap,
a careful choice of the expanding functions B, and £, charged by the dominant TEmode, the image is completely
is devised to make more accurate the well-known Galerkirgifferent and considerable radiation is expected through the
procedure for numerical solution. Several numerical metho®P-
such as the finite-integration method [5], the finite-element This paper is organized as follows. In Section Il we describe
our two-dimensional (2-D) model, the basic equations, and
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v following boundary conditions for the componentsand Z
Boundary on the metallic boundary; (see Fig. 1)
conditions: %
=Bl [ d ] Z =0 (4a)
— B2 Bl 1
~8.X =0 (4b)
o _]EEZ ____________ €r
- Rzgionl i Region II and on the metallic boundar,
1 2 erI V4
_________ g")____g> 9yZ =0 (5a)
1
r= —0,X =0 (5b)
o €p
‘ﬁh whered,, denotes partial derivative with respect to variable
§\ On the interface between the two media the normal compo-

nents of D and H and the tangential components Bfand H
Fig. 1. The infinite parallel-planes waveguide model of the dc bregk: must be continuous. So, using the notatign= cont” to mean
cross section of the model and the metallic boundaries. that f(z) is continuous on the air-dielectric interface, we write
the following four linearly independent interface conditions for

Il. MODEL AND BASIC EQUATIONS the potential functionsY and Z
A 2-D model for a rectangular waveguide open junction X =cont (6a)
with transverse dimension(® x b) consists of two, normally 1
intersected, infinite parallel-planes waveguides, as shown in ;@X = cont (6b)
Fig. 1. The parallel planes of the horizontal waveguide are in- 7 — cont (6C)
finitely extended in the:- and z-directions, while the distance 1
between them is taken equal to the small transverse dimension 9.2 - gan = cont. (6d)

a of the actual rectangular waveguide. As for the vertical ) ] o
waveguide, which is assumed to be filled with dielectriblote that theX' potential component is separated satisfying

material of relative permittivitye,., the parallel planes are conditions (6a) and (6b); our choice of using electric potential
extended to infinity in ther- and y-directions, while the therefore gives only one interface equation that couptes

distance between them is denoted #yand represents the@nd Z out of four. If we had choset, and £, we would
width of the open junction. have two coupling conditions; if we had choséh and E.

The wave energy incident from = —oo on the open (corresponding to the TE and TM modes of the incoming

junction is partially reflected and partially transmitted. Somwaveguide) we would have four coupling conditions.
of the energy is coupled to the vertical dielectric waveguide, L€t US now represent the potential functiosand Z in

Since no free current is preset,- D = 0 from which Regions | and Il (see Fig. 1) as infinite sums on Fourier
components
D=-VxF
|:XI:| — (i ket [1}
whereF' is an electric vector potential, also called the magnetic Zt 0

the incident Tk, dominant mode of a monomode waveguide

Herztian potential [17] or the antipotential, moreover, since i
+2.
has noy-magnetic component, we assume that the electric

Omx } Cos(kymy)ekmzejk” (7a)
m=0 Gmz

potential F' has noy-component. An appropriate choice for XII:| _ i |:brnx:| cos(k, y)e—km(z—d)ejm (7b)
the electric potential is then Zn = b e
F = ¢[X(z,y,2)e, — . Z(x,y, 2)e,] (1) wherek, = /b andky,, = mn/a are the guiding wavenum-

_ _ ~bers in thez- and y-direction, respectivelyk = (w?/c* —
where X (z,y, ) and Z(z, y, z) have dimensions of potent|a|.kg2c)1/2 is the guided wavenumber for the propagating;JE

The fieldsE and H in terms of I are given by [17] mode, k.., = (k2,, — k?)'/2 are the attenuation constants for
1 evanescent modes fer > 1, and k.o = —jk. Note that the
E=- EV X F (2) incoming TE, mode is produced by the only driving term,
1 which appears in th& potential component. The coefficients
H ij—uv XX F (3) 4, anda,,, correspond to reflected waves, back to Region |,

while b,,,,, andb,,, correspond to transmitted waves, through

where the dielectric permittivite = ¢ge,.(z) is in general the open junction to Region II.

function of z. The electric potentiall” satisfies the wave The fact that the potential functiod does not contain

equationAF + ¢uw?F = 0 in uniform media. any driving term, combined with the interface conditii),
Applying boundary conditions for the tangential compoimplies that this potential component and the corresponding

nents of & and the normal components &f we obtain the waves are generated just because of the presence of the
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dielectric discontinuity at = 0 andz = 4 and not because With simple matrix manipulations, (11) can be solved for
of the geometric gap. Otherwise, if there were no dielectrigy and dx and the result is introduced to (10) to yield the
in the vertical waveguide, the quantify /e, )d,X would be following system for theX-function coefficients:

continuous, so tha.Z and Z itself would be continuous at

the interface; thereforeZ would satisfy the equations of a -

kznl |:Inrn + ﬁnrn Jnrn } |:arnx }

damped resonator without internal discontinuities in the uni Jmn Lom + Bom | | by
of Regions |, Il, and IlI, with mixed boundary conditige= 0); "~ a .
this would imply Z = 0. __ [;‘Sno +Jk—7n0] (12)
In Region Il we represent the functioisand X as Fourier 25k Jn0
integrals
Lo where 8, = avndnm/erk.n is @ purely diagonal term and
[Xm} _ / dky _jk,y
Zm - 2m Inm 2 oo dky 1
. <|:CX:|ejk;z + |:dX:|e—jk;z>ejkIac (8) |:Jnrn:| “ d/_oo 2 fn( ky)frn(ky)k_zd
€z dz cot(k.d) 13
' |:CSC(/€Zd):|' (13)

wherek, = (K?—k2)!/? andk’ = (e,w?/c?—k2)/?, with the
square root analytically continued for nonpositive arguments
(the complex plane cut is yet to be defined, but it will be show,
that the results do not depend on its particular choice). Na
that the coefficientsx, dx, cz, anddz are functions ofs,.

The integrands in (13) are even i, so that only the
uare oft. and notk, itself appears in any series expansion
the integrand; this makes immaterial the choice of cut in

the k, complex plane. Moreover, both integrals in (13) have

From (7) the propagatlng field in Re_glo.ns land I can b|‘?1finite poles in the complex plane. A pair of poles is on the
computed. The reflection;; and transmissiors,; scattering real axis, atk, = %', corresponding to the dominant TE

coefflc_lents N power are then given, in terms (_)f the I:Our'%ode, which always propagates in the dielectric waveguide.
potential coefficients, by the following formulas: An infinite pair of poles are ak, — Ljk;, where k; —
ka . ke (#27%/d? — k'?)1/2 and correspond to T and TM;, modes,
fu= <a0x - Za02> <a0x - f“02> (9@)  \yhich may be propagating or evanescent, depending on the
E E width d of the dielectric waveguide. For small values @f
s21 = <box - ]:boz) <b(’§x - fbéz> (9b) these modes are evanescent and the poles are on the imaginary
axis. Each of these modes start to propagatel &®comes
where the superscrigtdenotes complex conjugate quantitiesgreater tharéz /%'

Let us discuss the meaning of results (unphysical) if sin-
gularities in the integrand were fixed by the principal value.
The 1,,,, and J,,,,, found were real. The structure of (12) and
L . the real values ofl,,,, and J,,,,, always impose a solution

Application of the condition (6a) at = 0 andz = d, gatisfying the relatior|si:| + |sz:| = 1, which means that
multiplication bycos(k,,y') and integration o’ fromy’ =0 016”5 1o power radiated into the dielectric waveguide,

I1l. M ATRIX EQUATIONS AND
SOLUTION FOR THE X POTENTIAL

oy = a yields whatever the value ofl. A way to interpret this result is to
8n0 + G +oo dk, consider that there are, indeed, waves propagating into the
’Yn{ bo } = /_Oo gfn(—ky) dielectric waveguide, but these waves are reflected back from

the boundaries afy = +oc since no boundary conditions
. [ jl%;d _}kd} LCZX} (10) correspondent to purely outgoing waves were imposed there. A
¢ ¢ X simple way to avoid this effect is to introduce a small damping
where v, = (1 + 6,0)/2 is a numerical factor, and theOn the waves that travel along the dielectric waveguide, so that

function f, expresses coupling between discrete modes a@ Power reaches the boundariesyat +oo to be reflected
the continuousk,, defined as back. In mathematical terms, when evaluating the integrals on
" k, in (13) by the residue method, we add an imaginary part

Fala) = 1 / dyei™Y cos(kyny). 7> 0 to the relative dielectric constaft, — €.+ jn). In the
aJo complex plane, the pair of previously real poleskgt= ££’

is now moved from the real axis, taking an imaginary part
proportional ton. Likewise, the infinite pairs of the previously
imaginary poles (for smalll), are now displaced for a real
part proportional ton. The method is analogous to “Landau

The second interface conditiof6b) for the X-potential
function is then applied at = 0 and z = d, multiplied by
¢'*+¥ and integrated og from y = —oco to y = 400, to yield

s —6m0 F G x prescription” for the choice of the integration path in instability
acr Z kszm(ky){ b x } studies. In the limit of vanishing, the following expressions
m=0 for the integrals in (13) are obtained: (£1)" = —(-1)™
—| 1! —Lol|ex 11) thenZu, = Jun =0, and if (~1)" = (=1)™ then see (14),
Jkod —jk-d . ( )
=t —emIBE | [dx shown at the bottom of the next page, where the following
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notations are used’ = k’'a/w,s; = kea/w, and to give
/ 3 /2 2y—1
g ] _ @ [~(s2=n?) Bt 20
|:gné:| © 27d? {2(3? +n?)~! } (15a) Q= 1+42F (20a)
/ 3 v _ gws’
|:C :| = a_g |:J3 (1 6_775> :| (15b) and
¢ dm3 [2s4(1 — e77™%) Gy + G
. . " =——= 20b
In the above expressions primed quantities refer to-ié @ 1-2dG (200)
poles while these with subscriptto the first of thek, poles. ere
For small values off the main contribution to the integrals -
comes from thek’ poles, that means the propagating waves |F1| _ 5’ Z kom 1 | Dy =Dam||cn
in the dielectric waveguide, while the significance of the |F>| ™ ¢ = 2 _m?2 Do |—Domn Dim || fn
evanescent waves, represented by kheoles, is increasing "= (21a)
with d. o0
Assuming thatd < = /&', it is sufficient to keep only the {Gl} __a kam 1 [ D, —ng} [@n}
first (¢ = 1) term of the infinite sum in (14). G2 a =51 +m? Dy [=D2m Dim | | fn
After substituting (14) into (12), we note that thg, and (21b)
b, vanish forn odd, and the following system is obtained ¢ . Dy — Do
for the even order coefficients of th€ potential component = Z 52— m2)? D (21c)
Q Q- . m:oo "
Dln D2n [£77%% _ 3/2 et 712 3% + m2 " (16) — _1 Z 4771 Dlrn + D27n (21d)
Doy Dyy bnx N Q/ Q a 1 =0 31 + m2 Dy,
&2 —n2 - 52 +m? —fn
and D,, = D3?,, — D3,,. Substituting (20) back to (19) and
where applying this equation for. = 0, analytical expressions for
Dy, | 1 |y kan gl + gn1 potential coefficientsy, andbg, are trivially obtained.
= + =" (17a) x X
Ds, 2¢,. | 0 a |9 — gn1
Yo | .k
e < T3, (g + gn1bno IV. THE COEFFICIENT OF Z
il = "k ) Combining (4a) and (6c) we note that th& function
77, (9n = gn1)éno satisfies for every the equations
c c1
N k| $2(5% —n2) T $2(s? — n?) 17b) Zi(x,y,0)I(y) = Zu(z,y,0) (22a)
Ta 4 €1 Zn(w,y, d)I(y) = Zm(=w,y, d) (22b)

_l’_
§'2(s'2 —n2 s2(s?2 — n? ) .
_ ( _ ) _1( ! ) (whereI(y) =1 for 0 < y < a and is zero elsewhere); their
and we introduce the collective variables solution will be similar, but not equal to the solution for the

Q' 1 &  (tmy + by )(82 —m?2)~1 X function Fourier coefficients.
{ } = Z Fezm Ll(amx — by )2 +m2)t } (18) After substituting the expression for fields (7) and (8), we

Q1 a
m=0 Fourier transform (22) obtaining for eadh
The infinite system (16) and (18) can be solved. Indeed,
from (16) we obtain expressions for the coefficieats, and 1 1 } { } —a |:amz:| 23
bn, in terms of @’ and Q; k= mik=d T;)fm b, (23)
{“nx} - _ L{ Dy, —D2n} where not onlycz anddz, but alsok, depend onk,. The
bnx D, |=Dwm  Din remaining condition (6d) applied to the two interfaces at 0
Q O e and » = d gives the two equations
3/2 _ 712 3% + m2 n
19
Q' + Q1 I (49 Z <kzrn [Zmz } — jkyeq {67"’0 ;_ mx } ) cos Y
8/2 _ 712 3% +m2 n 0 mz —Umx a
whereD,, = D?, — D3 . Introducing (19) into (18) we get a _ [k % e‘f’“yyjkz{ 1k 4 _f’} d} {CZ} (24)
2 x 2 system for unknowns)’ and J;, which is then solved 27 —e/t eI [ dg
d (=1D)fe
! oo | Gnebnm + sy s Y vy 2
B} _ m 5+ (5% = n3)(s = m2) " (5 )57+ m?) 14

=1 Onm + i + L
= GntOnm (2 —=n2)(s? —m?)  (s2 +n?)(s? +m?)
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where we expressed in terms of a,,,,bm,,cz, and dz We recognize that first and second term of (28) inserted in
and X similarly, thanks to (7) and (8). Here the quantitf27) can be merged withy andu,, after defining for anyn
ea = 1 — €1 comes from the jump of dieletric constant ak new vector
interface; it is positive for ordinary dieletric. Ry
Equation (24) holds only fob < y < q; for any givenm, Un =Un + Gn j{;:?fh((q;nd;) 1%33?((;"5)} {amz } .
let u,, indicate the expression in round brackets of (24);
are two-component vectors and are just useful shorthand, since
they do not depend o. In the right-hand side (RHS) of (24), Fyrthermore, by defining
¢z may be easily expressed in termssgf, thanks to (23); we
note that unfortunately, whep = 0 or y = a the integration By, =vn(k; + o/ tanh(gnd))
on dky is divergent fork, — oo due to thejk. factor. By B, = —v.qn/sinh(gnd))
the naive approach of multiplying (24) wittes(wmy/a) and
integrating from O tos we could obtain directly expressions(29) becomes
for w,, in term of a,,,, still plagued by divergent integrals, 1[E. Eylla
which makes residue method inapplicable. To avoid this, w&/» = Tn [E% ElJ [

follow a more tortuous path, which practically gives the same
results (35). With this notation, (27) becomes

We first define the integrals of the eigenmodes n2 oZ
== 33 s
s7+n? s74+m?

b’nlz

(29)

. 6771 mx
Z:|_ka€d|: ’E;_a } (30)

bnz mx

Gm(y) = /y COS(me/a) (25) (=1 m=0 i
a/2 . |: 1% —J :| |:Zrnz:| (31)
_j 1 myz )

and, correspondingly, we integrate (24) fren2 to y
It is convenient to distribute (31) into parts, using the identity

dk.y C—ikya/Q — o~ thyy
Zumem(y)Ia/gkz 3 n2 1 L1
— Y = —
m=0 n? 4+ s7 m?+ s? n?+4s7  m?+s?
—Ch, Shi m 2

Z frn(ky)|: v Shup } { z:| (26) 1 m

o Shyp Chyp brnz =+ m m (32)
where the quantitiesy,,, = 1/tanh(jk.d) and sn,, = Some direct information from boundary condition makes (31)

1/ Slnh(Jl{}Zd), which came from matrix inversion in (23) andsimp|er to be solved. From (22) taken @t: 072 =0 or
product in (24), still depend oh,. Note that integrating on , — 7 we know that
y cancels singularity fork, — oo, but ¢,, are no longer
orthogonal. D, = bm, =0.
We can now multiply (26) by, ~! sin(7ny/a) and integrate m m
from O to a, obtaining (after performing the straightforwardrhis conclusion is corroborated by the fact that otherwise
integrations implied inc,,, and f(k,, m), the simplifications (31) would contain a divergent part, precisely that arising
of k, factors and exploiting symmetry aboyt= a/2) from first term of RHS of (32). This part is instead zero
a a I M a because of%,, a,,, = X, b,, = 0. Second, since we
—, — —uy = a? Z { nm o } { "’Z} (27) search a finite solution foZ and X, we can assume that
2mn o Mpn =L | | b SUMS Of Gy x5 Gy > D xc , b, @r€ convergent, which implies
ma,, — 0 whenm — co. From expression (30), knowing
that By, o n and E», is exponentially decreasing with, we
conclude that

m even

valid for n # 0, where L and M, computingdky integration
by residue method and the elementdry integrations, have
similar expressions

J— qO (JrnénrnTrn nll_{& vn - 0' (33)
7r7‘LCL-Z\4nrn — — Um0 .
sinh(god) * 2sinh(gd) Taking the limit of (31) forn — oo and observing that the
_ Z n’ jNCgZ 28) part arising from the third term of (32) converges to zero, we
— sj+n? sj+m? are left with the second part only
Z a2 1
with 7y = 0 and 7}, = 1 otherwise; herey,, = (m?r?/a? — vo = — Z Z 5 “ : { }25 ‘{ } {Z’"Z . (34)
k'2)1/2 and the pole strength is given by 121 m=o St T LTI mz |
p a2f? Adding (34) to (31), we get
of =2 —[1 - exp(~kea). p , _
TS ¢ m 1 -2 [am.,
. . o0 ,ann2+282+n2282+m2 _jQZ 1 b
The expression fol. corresponding to (28) hag‘ deleted 1=1 ¢ m=0 ¢ Lz

and sinh replaced bytanh . (35)
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for any given evemnn # 0. As to vy, we note that (34) 35 | I T
becomes of the form (35) by substituting(s? + m?) with o L Mafla —e—MP —a—theory /
sy 2(1—m?/(s3+m?)); thus (35) applies to every even> 0. LT Mafla o MP o theory //
We now define the collective variable _ 254
* +
Ay + bm -
Cl = — Z mz | Mz (36) S
21 2 S
m=0 m® + 81 ‘g
which is a sort of projection on a privileged axis of £
{@m,,bm,} Space. Consistently to the approximation done
for X, we truncate the RHS of (35) to the first term4nso '
that (35) may be solved as 0 2 4 .6 8 10 12
gap width d [mm]
-1
Ung | _ Eln E2n ik 5n,o + Gny Fig. 2. The reflection coefficient;; (in %) as a function ofi, for ¢, = 1
bnz - E2n Eln JRbed _bnx (empty markers) and 2.1 (filled markers). Analytical result are compared with

result from two numerical codes.

Z
- ac H) (37)
net sy dimensions arez = 7.9 mm, andb = 15.8 mm. In practical
By substituting (37) into (36), we find a linear equation fopplicationd is typically 1 mm, so here will range from 0.1

the collective variable, of the for@, = F; — cZ H,C;, with mm to about 10 mm; the cases=1 (air gap) and, = 2.1
the coefficients (Teflon) are particularly important.

n? ik (0 + s — by) From numerical code MP, transmission, reflection, and
Iy :_Z JP6€dVn\On0 T Gnx T Onx (38) radiation can be directly found; their sum is of course unity

n n®+ s By, + B2, within the precision of the code; we plot unnormalized results.

202 In the case of MAFIA results, it was convenient to obtain

Hz =- Z (n2 + s2)2(Ey, + B, (39)  transmission and reflection directly and to compute radiation

as difference from unity. From the present analytical theory

The value of the collective variable is thus transmission and reflection are directly obtained; radiation
Fy is obtained by difference, which may lead to larger relative

C, = m (40) errors. In Figs. 2—4 we plot transmission and reflection for

¢, = 1 and 2.1. We first note that analytical theory assumes
This equation together with (37) are the complete solution fgfat %, is real, which implies
Z;n = 0 case is trivial. / _1/2 _

Let us mention how the symmetries of the model geometry d<n/k = W[e”(w/c)Q - (W/b)Q] V2= dm(€r)
(reflection abouty = a/2 and reflection about = d/2) has that is d, = 13.6 mm fore, = 1 and d,, = 8 mm for
entered in the final result. The odd components (respegt toe, = 2.1. In the first case, remarkable also because the
reflection) are then odd components, which are not excited{ function only affects results, the agreement of MP and
and they had been found to be zero. Both symmetric amdalytical theory is rather good for transmission and radiation
antisymmetric components (respect to thereflection) are for d < d; = 8 mm. The oscillation for > d; of the analytical
excited by the transmitter; indeed we found collective variablessults is explained by the fact thai becomes imaginary
which are symmetric (namely’ andC}, that are proportional whend exceedsd,,,; we conclude that the results are reliable
to a + b wherea andb are a,,,, andb,,, or a,,, andb,,, for d<0.5d,,, where 0.5 is a conservative safety factor; that
as appropriate) and others which are antisymmetric (namelyads to the criterion

(), proportional toa — b). 1< 0.5 7r (41)
w2 7r2
V. COMPARISON WITH NUMERICAL RESULTS a2 T

In this section, we show comparisons of results of our anfor everye,. For ¢, = 2.1 we indeed find that the analytical
lytic theory to numerical results obtained from two codes. Omesult (including reflection) are reliable up do< d2 = 5 mm,
is the well-known Maxwell’s equations using finite integratiomn agreement with criterion (41).
algorithm (MAFIA) [5] and the other, provisionally called In Fig. 5 we plot reflection, radiation, and transmission for
microwave problem (MP), is being developed by Cavenagé.— 1 mm (analytical result for radiation have a large relative
The results from these codes are generally in agreemestror). From criterion (41) we expect that reliable results will
Results from MP are preliminary; since it is a 2-D code (usinge obtained fore, <e; = (re/w)?(b~2 + 0.25d~2); that is
ten mesh nodes to model the gap) it runs very fast (one minute= 27 for d = 1 mm. We note that the analytically calculated
per simulation) and 2-D parameter studies are well possibléransmission is indeed in good agreement with the numerical
To simplify comparison, we consider only the gap thicknesssults. As for reflection, agreement is generally rather good,
d and the dieletric index, as variable parameters; othewith some large error close tQ < ¢y = 7, that can be related
data applies to WR-62 (alias WG-18, alias R140) rectangularthe fact thaty, vanishes and then becomes imaginary when
waveguides, operating at 14.4 GHz. The waveguide transvetsegeaches and exceeds = (rc/w)?(b=2 + 4a=2) = 7.38.
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Concerning the sum of reflection and transmission, we note

that it is still physically consistent, that is, it does not exceeds Having obtained an analytical solution from first principles
one even for large value of,.. of a 2-D dc break, discrepancies with numerical results may

In Fig. 6 we plot a 2-D histogram of transmission agome only from approximations used; and the only approxi-
computed the MP code. Note that the greater the gap widthraation used here is neglecting all pokg 2 on the ground
the dielectric constant, the less wave is transmitted, until sonfet they contribute less thdan and%’ poles because they are
undulation (shown in front view) appears between 20-50%. far away from real axis. It should be noted that the inclusion
Fig. 7 the 2-D histogram for analytically computed transmisf ¢ = 2, 3 poles inX function computation will be extremely
sion is shown for comparison. The flat zero plateau in theborious, albeit possible. On the other side 2 pole can be
front is where theory is no longer defined (becaiisbecome easily included inZ, but it proved to be practically irrelevant.
imaginary). The region of criterion (41) correspond roughly We also note that in the limi{ — 0 the agreement between
the first six bands of histogram (corresponding to transmissititeory and codes becomes very good. This can be expected,
greater than 40%). In this region, agreement between thesigice the polest, = ik, move toward infinity, therefore
and results is fairly good. making thef = 1 truncation more plausible.
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